Note

Separation of inorganic isomers by thin-layer chromatography

V. Structural, linkage, geometric, and conformational isomers of various ccordination numbers

GEORGE B. KAUFFMAN, BARRY H. GUMP and BRIAN J. STEDJEE
Department of Chemistry, California State University at Fresno, Fresno, Calif. 93740 (U.S.A.)
(Received January 12th, 1976)

In previous papers in this series, we described the separation by thin-layer chromatography (TLC) on silica gel of square planar non-electrolytic geometric isomers of platinum(II), octahedral non-electrolytic and electrolytic geometric isomers of various metals ${ }^{2}$, square planar non-electrolytic and electrolytic geometric isomers of various metals ${ }^{3}$, and ligand isomers of various coordination numbers ${ }^{4}$. In the present paper we extend our TLC separations to include structural, linkage, and conformational isomers as well as geometric isomers of coordination number five. Inasmuch as we have demonstrated in our first article ${ }^{1}$ that TLC separations can be carried out on a semiquantitative preparative scale (with ca. 200 mg of total mixtures), all the separations reported here are strictly qualitative.

EXPERIMENTAL

Isomer samples were kindly provided by the persons listed alphabetically under Acknowledgements (designated by initials in Table I). All solvents were C.P. or reagent grade. Generous samples of the adsorbents used, SilicAR ${ }^{\otimes}$ TLC-7F and TLC-7G, were provided by the Mallinckrodt Chemical Works, St. Louis, Mo., U.S.A. Microscope slides ($75 \mathrm{~mm} \times 25 \mathrm{~mm}$) were used for plates and were developed by the assending technique. Iodine vapor was used for visualizing all samples except for samples No. 2, No. 3, and No. 8, the colors of which were so intense that no visualization was required. Further details are given in previous articles ${ }^{1-4}$.

RESULTS AND DISCUSSION

The results obtained are summarized in Table I. R_{F} values were reproducible to $\pm \mathbf{0} \mathbf{0 3}$. Although many developing solvents and mixtures were evaluated, only the most successful combinations, i.e., those resulting in maximum differences between \boldsymbol{R}_{F} values and minimum tailing, are shown. The following samples, listed by type and number were successfully separated: Coordination No. 6 - MAs \mathbf{M}, sample No. 1 (partial); M(ABBA)(CD), samples No. 2 and No. 3; Coordination Nos. 6 and 4 $\mathrm{M}(\mathrm{AB})_{2} \mathrm{C}_{2}$ and $\mathrm{MA}_{2} \mathrm{~B}_{2}$, sample No. 4; Coordination No. $5-\mathrm{M}(\mathrm{AB})_{2} \mathrm{C}$, sample No.
Table I
THIN-LAYER CHROMATOGRAPHY OF MISCELLANEOUS ISOMERS

Coordination No. 5

RLB 8
RET ${ }^{9,10}$
complete
$\stackrel{7}{6}$
$\stackrel{9}{9}$
$\stackrel{\text { ® }}{\stackrel{\circ}{\circ}}$
methanol-water (1:1)
dissolved in dichloro-
methane
developed in ethanol
GRK ${ }^{12,13}$

(purple) $\left[(\mathrm{VO})_{2}(1) l-\right.$ tort $] \cdot 12 \mathrm{H}_{2} \mathrm{O}$
 $\stackrel{\rightharpoonup}{2}$
 (brown) ${ }^{10}$

 (Five isomers possible)

(a) Na_{4} frans-[(VO) $\left.)_{2}(d \text {-tart })_{2}\right] \cdot 6 \mathrm{H}_{2} \mathrm{O}$
[VO(CH $\left.\left.\mathrm{CHOCHCOC}_{3} \mathrm{COCH}_{5}\right)_{2}\right]$
(a) cls (olive crystals) (sample No. 1)
(b) cis (green powder) (sample No. 2)
5. $\quad \begin{aligned} & {\left[\mathrm{VO}\left(\mathrm{CH}_{3} \mathrm{COCHCOC}\right.\right.} \\ & \left.\left.\text { (a) } \mathrm{H}_{5}\right)_{2}\right] \\ & \text { (olive crystals) (sample No. 1) }\end{aligned}$ (b) cis (green powder) (sample No. 2)

(dark brown)
TABLE I (contimued)
No.

[^0]5 (partial); Binuclear complexes, sampie No. 6 (partial), sample No. 7; M(ABA)C, sample No. 8. Samples No. 2 and No. 3 contained impurities which were visualized on the plates with iodine-vapor. The separations of samples No. 4 and No. 6 are questionable for the reasons cited in Table 1 . With regard to sample No. 5, only cis[VO(benzac) ${ }_{2}$] is known in the pure state, while solutions prepared from the solid cis isomer presumably contain a mixture of cis- and trans-[VO(benzac) $]^{16}$. Although two spots were obtained on chromatographing sample No. 5a, which would seem to confirm this presumption, only one spot (with a minor constituent at the origin) was obtained on chromatographing sample No. $5 b$, leading us to believe that sample No. $5 a$ may have contained impurities and that therefore its separation into cis and trans isomers is doubtful. For sample No. 7, although the trans isomer (sample No. 7a) could be separated completely from sample No. 7b, the latter, supposedly a mixture of four possible isomers, could not be separated into these four isomers.

In addition to the isomers shown in Table I, separations were attempted with the following isomers (listed by type), but were unsuccessful for the reasons cited.

Coordination No. $6-\mathrm{M}(\mathrm{ABBA})(\mathrm{CD})$, cis- $\left[\mathrm{Co}(\right.$ trien $\left.)\left(\mathrm{H}_{2} \mathrm{NCH}_{2} \mathrm{COO}\right)\right] \mathrm{I}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$: β_{1} (pink-orange), $\beta_{2}(R R+S S)$ (reddish orange), β_{2} (RS) (pink-orange) (BED) $;$ same R_{F} values.

Coordination Nos. 6 and $4-\mathrm{M}(\mathrm{AA})_{2} \mathrm{~B}_{2},\left[\mathrm{Co}\left(2,2^{\prime}\right.\right.$-bipyridine) $\left.\mathrm{Cl}_{2}\right]: \alpha$ (octahedral polymer, light blue), β (tetrahedral monomer, royal blue) (JK) ${ }^{17,18} ; R_{F}=0$ for both forms in dichloromethane.

Coordination No. 5 -Binuclear complexes, $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Fe}_{2}(\mathrm{CO})_{3} \mathrm{P}(\mathrm{OR})_{3}$, where $\mathrm{R}=\mathrm{OCH}_{3}, \mathrm{OC}_{2} \mathrm{H}_{5}$ and $\mathrm{OC}_{6} \mathrm{H}_{5}(\mathrm{RJH})^{19}$; on the basis of IR spectroscopic evidence, each of these three dark red compounds is believed to exist as a mixture of geometric isomers in solution, yet in dichloromethane no chromatographic separations were obtained.

CONCLUSIONS

The advantages of TLC in the separation of inorganic isomers have been discussed in previous articles ${ }^{1.2}$. In the present paper we have extended the method to include the separation of various types of structural isomers ${ }^{20}$, such as linkage isomers (samples No. 1 and No. 8), and coordination number isomers (sample No. 4), as well as conformational isomers of Coordination No. 6 (samples No. 2 and No. 3) and geometric isomers of Coordination No. 5 (sample No. 7). Samples No. 6 a and No. 6 b are also diastereoisomers. The metals represented in this paper are $\mathrm{Ir}(\mathrm{III}), \mathrm{Co}(\mathrm{III})$, $\mathrm{Ni}(\mathrm{II}), \mathrm{Sn}(\mathrm{IV}), \mathrm{V}(\mathrm{IV}), \mathrm{Cr}(\mathrm{III})$, and $\mathrm{Pd}(\mathrm{II})$. Because of the wide differences in the structures of the isomers and of the ligands involved, no generalizations can be made concerning \boldsymbol{R}_{F} values.

ACKNOWLEDGEMENTS

We gratefully acknowledge the donors of the Petroleum Research Fund, administered by the American Chemical Society (Grant 1152-B), the National Science Foundation (Undergraduate Research Participation Program Grants GY 2607 and GY 9916), and the California State University, Fresno Research Committee, for support of this research. We also wish to thank Ralph R. Calder, Richard A. Houghten,

Jr., Shan Yaw Lee, and Robert K. Masters for experimental assistance and the following persons, listed in alphabetical order, for kindly providing experimental samples of isomers: R. Linn Belford, John L. Burmeister, Bodie E. Douglas, R. J. Haines, Michael A. Hitchman, Jacob Kleinberg, Graham R. Knox, Hans-Herbert Schmidtke, John F. Sieckhaus, and Robert E. Tapscott.

REFERENCES

1 G. B. Kauñman and B. W. Benson, Inorg. Chem., 6 (1967) 411.
2 G. B. Kaufiman, B. H. Gump, G. L. Andersen and B. J. Stedjee, J. Chromatogr., 117 (1976) 455.
3 G. B. Kaufiman, E. H. Gump and B. J. Stedjee, J. Chromatogr., 118 (1976) 433.
4 G. B. Kauffman, B. H. Gump and B. J. Stedjee, J. Chromatogr., 121 (1976) 138.
5 H.-H. Schmidtke, Inorg. Chem., 5 (1966) 1682.
6 C.-Y. Lin and B. E. Douglas, Inorg. Nucl. Chem. Lett., 4 (1968) 15.
7 J. F. Sieckhaus and T. Layloff, Inorg. Chem., 6 (1967) 2185.
§ M. A. Hitchman and R. L. Belford, Inorg. Chem., 8 (1969) 958.
9 R. E. Tapscott and R. L. Belford, Lnorg. Chem., 6 (1967) 735.
10 R. E. Tapscott, R. L. Belford and I. C. Paul, Inorg. Chem., 7 (1968) 356.
11 J. G. Forrest and C. K. Prout, J. Chem. Soc., A, (1967) 1312.
12 G. R. Knox, personal communication.
13 M. Ahmad, R. Bruce and G. Knox, Z. Naturforsch., 21 b (1966) 289.
14 J. L. Burmeister, H. J. Gysling and J. C. Lim, J. Amer. Chem. Soc., 91 (1969) 44.
15 K. A. Johnson, J. C. Lim and J. L. Burmeister, Inorg. Chem., 12 (1973) 124.
16 M. A. Hitchman, private communication, July 24th, 1969.
17 K. Yamasaki, Bull. Chem. Soc. Jap., 15 (1940) 130.
18 R. H. Lee, E. Griswold and J. Kleinberg, Inorg. Chem., 3 (1964) 1278.
19 R. J. Haines and A. L. du Preez, Inorg. Chem., 8 (1969) 1459.
20 G. B. Kaufiman, Coord. Chem. Rev., 11 (1973) 161.

[^0]: "This compound exists in two isomeric forms -an olive, paramagnetic, octahedral form in which DPES is bidentate with both P- and S-bonding and yellow isomer in acetone solution, while the reverse isomerization is not reported, when the yellow isomer, which was the only sample provided, was chromatographed, two distinct spots were obtained. The spots could not be identified isomerically.

