CHROM. 9017

Note

Separation of inorganic isomers by thin-layer chromatography

V. Structural, linkage, geometric, and conformational isomers of various coordination numbers

GEORGE B. KAUFFMAN, BARRY H. GUMP and BRIAN J. STEDJEE

Department of Chemistry, California State University at Fresno, Fresno, Calif. 93740 (U.S.A.)

(Received January 12th. 1976)

In previous papers in this series, we described the separation by thin-layer chromatography (TLC) on silica gel of square planar non-electrolytic geometric isomers of platinum(II)¹, octahedral non-electrolytic and electrolytic geometric isomers of various metals², square planar non-electrolytic and electrolytic geometric isomers of various metals³, and ligand isomers of various coordination numbers⁴. In the present paper we extend our TLC separations to include structural, linkage, and conformational isomers as well as geometric isomers of coordination number five. Inasmuch as we have demonstrated in our first article¹ that TLC separations can be carried out on a semiquantitative preparative scale (with ca. 200 mg of total mixtures), all the separations reported here are strictly qualitative.

EXPERIMENTAL

Isomer samples were kindly provided by the persons listed alphabetically under Acknowledgements (designated by initials in Table I). All solvents were C.P. or reagent grade. Generous samples of the adsorbents used, SilicAR® TLC-7F and TLC-7G, were provided by the Mallinckrodt Chemical Works, St. Louis, Mo., U.S.A. Microscope slides (75 mm × 25 mm) were used for plates and were developed by the ascending technique. Iodine vapor was used for visualizing all samples except for samples No. 2, No. 3, and No. 8, the colors of which were so intense that no visualization was required. Further details are given in previous articles¹⁻⁴.

RESULTS AND DISCUSSION

The results obtained are summarized in Table I. R_F values were reproducible to ± 0.03 . Although many developing solvents and mixtures were evaluated, only the most successful combinations, *i.e.*, those resulting in maximum differences between R_F values and minimum tailing, are shown. The following samples, listed by type and number were successfully separated: Coordination No. 6 —MA₅B, sample No. 1 (partial); M(ABBA)(CD), samples No. 2 and No. 3; Coordination Nos. 6 and 4 — M(AB)₂C₂ and MA₂B₂, sample No. 4; Coordination No. 5 —M(AB)₂C, sample No.

TABLE I

į

THIN-LAYER CHROMATOGRAPHY OF MISCELLANEOUS ISOMERS	ELLANEOUS	S ISOMERS			-	
No. Isomer	Source	Developing solvent	RF	es CC Magnific Com destinantes de ses diventantes e destinantes e de de de destinantes e de destinantes e de destinantes e de destinan	418,	Type of separation
Coordination No. 6 Type MAsB (Inkage isomers)			e sprende under che meneralization en extern	magdos e (V) set matematica magnetica (victoria).	- 1	Philippino and Marcal Color of the Color of
[Ir(NH ₃) ₃ NCS or SCN](ClO ₄) ₂ (a) Ir-SCN (deep vellow)	H-HS ₂	acetone	0.31 (fr-S)	0.38 (Ir-N)	0.07	partial
(b) Ir-NCS (bright yellow)		acetone-water (1:1)	0.60 (Ir-S)	0.73 (Ir-N) (streaking)	0.13	partial
Type $M(ABBA)(CD)$ 2 cls-[Co(trien)(L-alaninate)] $I_2 \cdot H_2O$, where tries $I_2 \cdot H_2O$	BED¢	water				
(a) β_1 (pink) (b) β_2 (RR + SS) (orange)			0.44 (a) 0.00 (c)	0.68 (b) 0.45 (a)	0.24	complete complete
 (c) p₂ (xs) (pink-brailge). 3 cis-[Co(trien)(L-prolinate)]I₂· H₂O (n) β₁ (brick red) (b) β₂ (brick red) 	BED¢	water	0.16 (b)	0.75 (a)	0.59	complete
Coordination Nos. 6 and 4 Types M(AB) ₂ C ₂ and MA ₂ B ₂ 4 2-diethylphosphinoethyl ethyl sulfide, (C ₂ H ₃) ₂ PC ₂ H ₄ S(C ₂ H ₅)	JFS7		·			
(a) Sch NCS (yellow)		dissolved in acetone developed in methanol	0.05	0.78	0.73	complete?
(b) $\begin{bmatrix} s_{CN} + \frac{s}{N} \\ p_{CS} \end{bmatrix}_{NCS}$ (olive) (not available)	•	dissolved in acetone developed in water	0.17	1.00	0.83	complete?

partial? none	partial?	•	complete		٠.
0.44	1		0.12		
0.60 (cts?) 0.78 (cts)	0.00, 1.00 (a)		0.90 (b)		
0.16 (<i>trans</i> ?) 0.00 (minor constituent)	0.10, 0.85,		0.78 (a)		
dichloromethane dichloromethane	methanol-water (1:1)		dissolved in dichloro-	developed in ethanol	
RLB ⁸	RET%.10		GRK ^{12,13}		
Coordination No. 5 Type M(AB) ₂ C 5 [VO(CH ₃ COCHCOC ₆ H ₆) ₂] (a) cis (olive crystals) (sample No. 1) (b) cis (green powder) (sample No. 2)	Binuclear complexes 6 Na ₄ [(VO) ₂ (C ₄ H ₂ O ₆) ₂]	(a) Na ₄ trans-[(VO) ₂ (d-tart) ₂]·6H ₂ O (purple) ¹⁴ (b) Na ₄ cts-[(VO) ₂ (d-tart, l-tart)]·12H ₂ O (brown) ¹⁰	[(<i>n</i> ·C _j H _j)Cr(NO)SCH _j] ₂	(Five isomers possible)	(a) $\int_{H_0C_0}^{C_1} \int_{C_1}^{C_1} \int_{NO}^{C_2} \left(\frac{11 \text{ groups } trans}{(R_F 0.58)} \right)$ (dark brown)
Coord Type I	Binuch 6		7	-	

(Continued on p. 398)

TABLE I (continued)

No.	Isomer	Source	Developing solvent	R_{F}		dR,	Type of separation
:	(b) Mixture of four possible isomers based on planar (Cr-S), cycle (brown) (R _F 0.88)				-	ende de la companya d	
	Haca CH4 CoH4						
	ÇH3						
	H ₆ C ₆ C ₆ H ₅						
	À						
	ON, OH						
	NO CHA Cells						-
	£						
-	Hofa (CaHa						
1	c ^H 3						
Type A 8	Type M(ABA) C (linkage isomers) Ref(Et.dien)NCSe or SeCN[B(C ₆ H ₃) ₄], where Et.dien = tridentate ligand N,N,N',N'-tetraethyldiethylenetriamine (a) Pd-NCSe (pale yellow)	JLB ^{14,15}	acelone	0.02 (a)	0.96 (b)	0,94	complete
1	(b) ru-secia (digin yenow)						

a yellow diamagnetic, square planar form in which DPES is monodentate with only P-bonding. Although the olive complex reportedly isomerizes to the * This compound exists in two isomeric forms -an olive, paramagnetic, octahedral form in which DPES is bidentate with both P- and S-bonding and yellow isomer in acetone solution, while the reverse isomerization is not reported, when the yellow isomer, which was the only sample provided, was chromatographed, two distinct spots were obtained. The spots could not be identified isomerically. NOTES 399

5 (partial); Binuclear complexes, sample No. 6 (partial), sample No. 7; M(ABA)C, sample No. 8. Samples No. 2 and No. 3 contained impurities which were visualized on the plates with iodine vapor. The separations of samples No. 4 and No. 6 are questionable for the reasons cited in Table I. With regard to sample No. 5, only cis-[VO(benzac)₂] is known in the pure state, while solutions prepared from the solid cis isomer presumably contain a mixture of cis- and trans-[VO(benzac)₂]¹⁶. Although two spots were obtained on chromatographing sample No. 5a, which would seem to confirm this presumption, only one spot (with a minor constituent at the origin) was obtained on chromatographing sample No. 5b, leading us to believe that sample No. 5a may have contained impurities and that therefore its separation into cis and trans isomers is doubtful. For sample No. 7, although the trans isomer (sample No. 7a) could be separated completely from sample No. 7b, the latter, supposedly a mixture of four possible isomers, could not be separated into these four isomers.

In addition to the isomers shown in Table I, separations were attempted with the following isomers (listed by type), but were unsuccessful for the reasons cited.

Coordination No. 6 —M(ABBA)(CD), cis-[Co(trien)(H₂NCH₂COO)]I₂·H₂O: β_1 (pink-orange), β_2 (RR + SS) (reddish orange), β_2 (RS) (pink-orange) (BED)⁶; same R_F values.

Coordination Nos. 6 and 4 —M(AA)₂B₂, [Co(2,2'-bipyridine)Cl₂]: α (octahedral polymer, light blue), β (tetrahedral monomer, royal blue) (JK)^{17,18}; $R_F = 0$ for both forms in dichloromethane.

Coordination No. 5 —Binuclear complexes, $(\pi - C_5H_5)_2Fe_2(CO)_3P(OR)_3$, where $R = OCH_3$, OC_2H_5 and OC_6H_5 (RJH)¹⁹; on the basis of IR spectroscopic evidence, each of these three dark red compounds is believed to exist as a mixture of geometric isomers in solution, yet in dichloromethane no chromatographic separations were obtained.

CONCLUSIONS

The advantages of TLC in the separation of inorganic isomers have been discussed in previous articles^{1,2}. In the present paper we have extended the method to include the separation of various types of structural isomers²⁰, such as linkage isomers (samples No. 1 and No. 8), and coordination number isomers (sample No. 4), as well as conformational isomers of Coordination No. 6 (samples No. 2 and No. 3) and geometric isomers of Coordination No. 5 (sample No. 7). Samples No. 6a and No. 6b are also diastereoisomers. The metals represented in this paper are Ir(III), Co(III), Ni(II), Sn(IV), V(IV), Cr(III), and Pd(II). Because of the wide differences in the structures of the isomers and of the ligands involved, no generalizations can be made concerning R_F values.

ACKNOWLEDGEMENTS

We gratefully acknowledge the donors of the Petroleum Research Fund, administered by the American Chemical Society (Grant 1152-B), the National Science Foundation (Undergraduate Research Participation Program Grants GY 2607 and GY 9916), and the California State University, Fresno Research Committee, for support of this research. We also wish to thank Ralph R. Calder, Richard A. Houghten,

400 NOTES

Jr., Shan Yaw Lee, and Robert K. Masters for experimental assistance and the following persons, listed in alphabetical order, for kindly providing experimental samples of isomers: R. Linn Belford, John L. Burmeister, Bodie E. Douglas, R. J. Haines, Michael A. Hitchman, Jacob Kleinberg, Graham R. Knox, Hans-Herbert Schmidtke, John F. Sieckhaus, and Robert E. Tapscott.

REFERENCES

- 1 G. B. Kauffman and B. W. Benson, Inorg. Chem., 6 (1967) 411.
- 2 G. B. Kauffman, B. H. Gump, G. L. Andersen and B. J. Stedjee, J. Chromatogr., 117 (1976) 455.
- 3 G. B. Kauffman, B. H. Gump and B. J. Stedjee, J. Chromatogr., 118 (1976) 433.
- 4 G. B. Kauffman, B. H. Gump and B. J. Stedjee, J. Chromatogr., 121 (1976) 138.
- 5 H.-H. Schmidtke, Inorg. Chem., 5 (1966) 1682.
- 6 C.-Y. Lin and B. E. Douglas, Inorg. Nucl. Chem. Lett., 4 (1968) 15.
- 7 J. F. Sieckhaus and T. Layloff, Inorg. Chem., 6 (1967) 2185.
- 8 M. A. Hitchman and R. L. Belford, Inorg. Chem., 8 (1969) 958.
- 9 R. E. Tapscott and R. L. Belford, Inorg. Chem., 6 (1967) 735.
- 10 R. E. Tapscott, R. L. Belford and I. C. Paul, Inorg. Chem., 7 (1968) 356.
- 11 J. G. Forrest and C. K. Prout, J. Chem. Soc., A, (1967) 1312.
- 12 G. R. Knox, personal communication.
- 13 M. Ahmad, R. Bruce and G. Knox, Z. Naturforsch., 21b (1966) 289.
- 14 J. L. Burmeister, H. J. Gysling and J. C. Lim, J. Amer. Chem. Soc., 91 (1969) 44.
- 15 K. A. Johnson, J. C. Lim and J. L. Burmeister, Inorg. Chem., 12 (1973) 124.
- 16 M. A. Hitchman, private communication, July 24th, 1969.
- 17 K. Yamasaki, Bull. Chem. Soc. Jap., 15 (1940) 130.
- 18 R. H. Lee, E. Griswold and J. Kleinberg, *Inorg. Chem.*, 3 (1964) 1278.
- 19 R. J. Haines and A. L. du Preez, Inorg. Chem., 8 (1969) 1459.
- 20 G. B. Kauffman, Coord. Chem. Rev., 11 (1973) 161.